Inverse optimization techniques for targeted self - assembly †
نویسندگان
چکیده
This article reviews recent inverse statistical-mechanical methodologies that we have devised to optimize interaction potentials in soft matter systems that correspond to stable ‘‘target’’ structures. We are interested in finding the interaction potential, not necessarily pairwise additive or spherically symmetric, that stabilizes a targeted many-body system by generally incorporating complete configurational information. Unlike previous work, our primary interest is in the possible many-body structures that may be generated, some of which may include interesting but known structures, while others may represent entirely new structural motifs. Soft matter systems, such as colloids and polymers, offer a versatile means of realizing the optimized interactions. It is shown that these inverse approaches hold great promise for controlling self-assembly to a degree that surpasses the less-than-optimal path that nature has provided. Indeed, we envision being able to ‘‘tailor’’ potentials that produce varying degrees of disorder, thus extending the traditional idea of self-assembly to incorporate both amorphous and crystalline structures as well as quasicrystals. The notion of tailoring potentials that correspond to targeted structures is motivated by the rich fundamental statistical-mechanical issues and questions offered by this fascinating inverse problem as well as our recent ability to identify structures that have optimal bulk properties or desirable performance characteristics. Recent results have already led to a deeper basic understanding of the mathematical relationship between the collective structural behavior of many-body systems and their interactions, as well as optimized potentials that enable selfassembly of ordered and disordered particle configurations with novel structural and bulk properties.
منابع مشابه
Self-assembly of the simple cubic lattice with an isotropic potential.
Conventional wisdom presumes that low-coordinated crystal ground states require directional interactions. Using our recently introduced optimization procedure to achieve self-assembly of targeted structures [M. C. Rechtsman, Phys. Rev. Lett. 95, 228301 (2005); Phys. Rev. E 73, 011406 (2006)], we present an isotropic pair potential V(r) for a three-dimensional many-particle system whose classica...
متن کاملDiamondoids and DNA Nanotechnologies
Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...
متن کاملDeliverable 5.1.2 Self-management and Optimization Framework Seventh Framework Programme Specific Targeted Research Project Open Source Blueprint for Large Scale Self-organising Cloud Environments for Iot Applications D5.1.2 Self-management and Optimization Framework Deliverable 5.1.2 Self-management and Optimization Framework
متن کامل
Interactive Mechanical Design Variation for Haptics and CAD
A fast design variation technique for mechanical systems is presented. It is used to interactively optimize mechanical characteristics while “self-assembling” or satisfying large systems of mechanical constraints. The high speed method is central to providing inverse dynamics force feedback in haptics and control applications. Performance advantages with the use of augmented coordinates for inv...
متن کاملSynthetic diamond and wurtzite structures self-assemble with isotropic pair interactions.
Using inverse statistical-mechanical optimization techniques, we have discovered isotropic pair interaction potentials with strongly repulsive cores that cause the tetrahedrally coordinated diamond and wurtzite lattices to stabilize, as evidenced by lattice sums, phonon spectra, positive-energy defects, and self-assembly in classical molecular dynamics simulations. These results challenge conve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008